LSSPT

本文最后更新于 2024年10月25日 上午

Introduction

conventional deep learning-based methods

  • LSTM, GCN
  • explore group activity representations under supervised or weakly supervised modes
  • require manually annotated personal action, labels(数据标记?)

background

  • NLP:unsupervised
  • SSL developes
  • SSRL, the temporal evolution (时间演变) not yet been explicitly exploited
  • predictive coding scheme (预测编码方案)

group activities

  • more complex state dynamics
  • lead to failure of SSRL using RNN(复杂序列关系建模困难)
  • LSTM相关模型缺乏注意力机制(attention to the history sequence dependencies)
  • Transformer networks in NLP restricted to normal data
  • 人类在长周期group activity中重复某种运动
  • exploiting multiple ranges of historical information

LSSPT

encoder-decoder framework

  • encoder: summarize group state
  • decoder: anticipate the state in the future
  • based on relation graph and casual Transformer

sparse graph Transformer

  • spatial state context in short time

casual temporal Transformer(CTT)

  • long range temporal dynamics

Approach

predictive coding

  • 时空编码函数
  • 预测函数
  • 优化函数

Architecture

  • 特征提取
    • I3D预训练模型提取人物特征
  • 长短状态编码
  • 长短状态解码
  • 推理训练
    • 重构损失reconstructed loss
    • 对比损失contrasitive loss
    • 对抗损失adversarial loss

Long-Short State Encoder

sparse graph transformer

building

\(\{p{}^t_i\}{}^N_{i=1}\),\(p_i\in \mathit R^d\)表示第i个人的特征

\(稀疏矩阵G^t=\{V^t,E^t\}\),\(V_t=\{p{}^t_i\}{}^N_{i=1}\)表示节点,\(E_t=\{(i,j)|p_i,p_j 在n时刻连结\}\)

\(节点的邻居Nei(i,t)=\{p^t_j\}{}^M_{i=1},其中p^t_j满足(i,j)\in E^t\)

update

通过邻居节点传递的key,自身节点的equry更新节点信息,由原先的\(h_i\)变为\(\hat{h_i}\)

$ =softmax()[v_i]^N_{i=1}\ q_i表示query\ k_j表示key\ v_i表示value\ $

group state modeling

$ 小组状态g_t=P_{max}(Norm(f_o(),...,f_o())) \ P_{max}池化层 \ Norm层标准化 \ f_o全连接层 \ $

casual temporal transformer

  • masked Transformer
    • 为绝对帧添加时间位置编码
    • 多层CTT层传递,masked multihead attention, LayerNorm(层归一化),MLP(what???)
    • mask保证模型只注意部分特定输入(类似于LLM中后文不会影响前文语素的注意力分配机制)

Long-Short State Decoder

  • state attention modules: 建立长短期之间的依赖
  • state update modules: 输出长短期信息

LSSPT
https://meteor041.git.io/2024/10/20/LSSPT/
作者
meteor041
发布于
2024年10月20日
许可协议